Evidence-based caries reversal using ozone

Guest Expert: Edward Lynch, MA, BDentSc, TCD, PhD Lond, FDSRCSEd, FDSRCSLond*, Associate Editor: Edward J. Swift Jr., DMD, MS

Question: I read the recent ‘Ask the Experts’ article on ozone (J Esthet Restor Dent 2007;19:303–5). Can you provide more information and clarify the question about whether ozone is a useful means of caries treatment?

Answer: Thank you for the opportunity to comment briefly on the recent report published in the journal on research with the HealOzone (KaVo, Biberach, Germany). Ozone cannot do everything and certainly should not be a treatment isolated from our individualised preventive oral health care. To be effective, ozone must be prescribed in sufficient concentration for an adequate time and must be delivered into the lesions.

Antimicrobial effectiveness of ozone

Ozone is one of the most powerful antimicrobial agents we could use in dentistry and clearly, there are enormous advantages to kill pathogens. The recent piece in the Journal of Esthetic and Restorative Dentistry (JERD) correctly mentioned a few of the papers that have proven the antimicrobial effectiveness of ozone but does not discuss the limitations of the biofilm studies.

Less than one log reduction of bacteria was measured after using ozone gas above biofilms in the culture media, which was a similar reduction to that achieved by using 0.2% chlorhexidine or photoactivated disinfection. However, ozone will react immediately with the reductants in the culture media, and the authors did not bubble the ozone into the biofilm. It is recommended that ozone be delivered under pressure into a lesion by pressing the delivery tube onto the carious surface so that it can penetrate the lesion. In vivo lesions (unlike artificial biofilms) contain many molecules (such as iron) that increase the antimicrobial effectiveness of ozone in caries.

Ozone, even at a very low dose and a short time of application, achieved a 57% reduction in biofilm and a 65% reduction in viable bacteria in model dental unit water lines. Also, a high level of biocompatibility of aqueous ozone on human oral epithelial cells, gingival fibroblast cells, and periodontal cells has been found.

Management of root caries

Ozone reverses shallow non-cavitated root caries lesions as part of a full preventive care regimen, which includes reducing the frequency of consumption of fermentable carbohydrates, increased use of fluoride-containing products, and improved oral hygiene.

It was stated incorrectly that the large antimicrobial reduction in root caries after HealOzone treatment was because of the control samples of caries being ‘consistently larger than the posttreatment sample,’ which is puzzling. It is the combination of the fluoride toothpaste and the ozone that is responsible for the reversal of these lesions.

Evidence-based caries reversal using ozone

*Finance is subject to status and for business purposes only.
Management of pit and fissure caries

The JERD piece mentioned a study18 in which the fissures were not fully cleaned out (i.e., the manufacturer’s recommendation was not followed). In addition, that study used only ozone to treat noncavitated caries involving the middle third of dentine, which is also a procedure that is neither recommended by the manufacturer nor attempted by dentists. Dentists in practice would open these lesions and remove caries and would only leave up to 1 mm of caries on the pulpal floor prior to ozone treatment and restoration.

The piece also mentioned a prospective published article19 that showed no overall significant differences for the treatment of noncavitated fissure caries with ozone. However, it did not mention the conclusion of this study, which stated that “from the data, it can be concluded that ozone application significantly improved noncavitated initial fissure caries in patients at high caries risk over a 3-month period.”18

Ozone as a potenoxidizer

Pyruvic acid (Ka = 2.50 mmol) contributes substantially to the decreased pH values associated with active caries lesions.20 Pyruvic acid is oxidatively decarboxylated to acetate and carbon dioxide on reaction with ozone21 as in the following equation:

\[\text{CH}_3\text{COOCO}_2+\text{O}_3 \rightarrow \text{CH}_3\text{COO}^-+\text{CO}_2+\text{O}_2. \]

Remineralization of incipient carious lesions can be encouraged by buffering plaque fluid by the production of acetate or other high pH acids found in resting plaque.22

Conclusion

The earlier JERD piece stated that some of the ozone studies are promising but indicated that “ozone has not been proven to be superior to other clinical approaches.” All dentists using ozone use it in conjunction with plaque and diet control, chemotherapeutic approaches such as fluoride or chlorhexidine, sealants, and stepwise excavation, and therefore, use it with other clinical approaches, not as an alternative. Of course, we all want more research on ozone. Cochrane and The National Institute for Clinical Excellence (NICE) would not pass the ozone protocol with the manufacturer nor its recommendation was followed.18

There was a statistically significant difference between the control and test samples for either 10 or 20 seconds in log10(CFU + 1) shown per milligram.20

If fissure sealing or restorating, then ozone treat first

There is good evidence for in vitro application of ozone as a useful prophylactic antimicrobial treatment prior to etching and the placement of dental sealants and restorations with no negative interaction with the physical property of enamel and adhesive restaurations.23,24

Ozone reversal of deciduous caries

The previous piece correctly mentioned a study20 in which open carious lesions were treated with ozone in anxious children. Ninety-four percent of the children were treatable and 95% lost their dental anxiety. The hardness values improved significantly in the ozone-treated test lesions after 4, 6, and 8 months compared with the baseline, whereas the control lesions had no significant change in hardness at any recall interval.21 The hardness of dental caries is our best clinical tool to reflect the activity of dentine caries.21

Ozone is a potent oxidizer

Pyruvic acid (Ka = 2.50 mmol) contributes substantially to the decreased pH values associated with active caries lesions.20 Pyruvic acid is oxidatively decarboxylated to acetate and carbon dioxide on reaction with ozone as in the following equation:

\[\text{CH}_3\text{COOCO}_2+\text{O}_3 \rightarrow \text{CH}_3\text{COO}^-+\text{CO}_2+\text{O}_2. \]

Remineralization of incipient carious lesions can be encouraged by buffering plaque fluid by the production of acetate or other high pH acids found in resting plaque.22

This was first published in the Journal of Esthetic and Restorative Dentistry. To subscribe, visit www.aestheticacademy.com/jerd.html.

References

29. Groothuis M, Silverwood CJ, Lynch E. High resolution 1H NMR investigations of the oxidative consumption of salivary biomolecules by ozone: relevance to the therapeutic applications of this agent in dental therapy. Biofac tes 2006;27:5–18.